Территория электротехнической информации WEBSOR. Конденсаторы: назначение, устройство, принцип действия Расчёт параллельного соединения

Задача 3.7. Обкладки плоского воздушного конденсатора площадью S каждая заряжены с поверхностными плотностями зарядов +s и –s. С какой силой они притягиваются?

СТОП! Решите самостоятельно: А17–А19, В10.

Читатель : А как изменится сила взаимодействия между пластинами, если между ними ввести диэлектрик?

Читатель : Почему? Ведь напряженность поля уменьшится в e раз?

Автор : Напряженность уменьшится только в самом диэлектрике. Если между диэлектриком и обкладками есть хотя бы небольшой зазор, то поле в этом зазоре от введения диэлектрика никак не изменится, а значит, не изменится и сила притяжения пластин (рис. 3.5).

Читатель : А если зазор полностью отсутствует? Например, если диэлектрик – жидкость?

Автор : Отсутствие зазора ничего не изменит. В этом случае в пространстве между обкладками просто появятся еще две разноименно заряженные плоскости, образованные поляризационными зарядами (рис. 3.6). Так как заряды этих плоскостей равны по величине и противоположны по знаку, то их суммарное действие на положительно заряженную обкладку равно нулю, следовательно, сила, с которой отрицательная обкладка действует на положительную, не изменится.

Читатель : А если мы введем диэлектрик в конденсатор, подключенный к источнику напряжения?

СТОП! Решите самостоятельно: В11.

Задача 3.8. Обкладки плоского воздушного конденсатора заряжены так, как показано на рис. 3.7. Определить емкость конденсатора и напряженность поля внутри конденсатора. Площадь обкладок S , расстояние между ними d .

Читатель : А напряженность надо искать как суперпозицию полей и .

Плоский конденсатор – физическое упрощение, взявшее начало из ранних исследований электричества, представляющее собой конструкцию, где обкладки носят форму плоскостей и в любой точке параллельны.

Формулы

Люди ищут формулы, описывающие ёмкость плоского конденсатора. Читайте ниже любопытные и малоизвестные факты, сухие математические знаки также важны.

Первым определил ёмкость плоского конденсатора Вольта. В его распоряжении ещё не было величины — разница потенциалов, именуемая напряжением, но интуитивно учёный правильно объяснил суть явления. Величину количества зарядов трактовал как объем электрического флюида атмосферы – не совсем правильно, но похоже на правду. Согласно озвученному мировоззрению ёмкость плоского конденсатора находится как отношение объёма накопленного электрического флюида к разнице атмосферных потенциалов:

Формула применима к любому конденсатору, вне зависимости от конструкции. Признана универсальной. Специально для плоских конденсаторов разработана формула ёмкости, выраженная через свойства материала диэлектрика и геометрические размеры:

В этой формуле через S обозначена площадь обкладок, вычисляемая через произведение сторон, а d – показывает расстояние между обкладками. Прочие символы – электрическая постоянная (8,854 пФ/м) и диэлектрическая проницаемость материала диэлектрика. Электролитические конденсаторы обладают столь большой ёмкостью по понятной причине: проводящий раствор отделен от металла крайне тонким слоем оксида. Следовательно, d оказывается минимальным. Единственный минус — электролитические конденсаторы полярные, их нельзя подключать в цепи переменного тока. С этой целью на аноде или катоде обозначены значками плюса или минуса.

Плоские конденсаторы сегодня редко встречаются, это преимущественно плёночные микроскопические технологии, где указанный род поверхностей считается доминирующим. Все пассивные и активные элементы образуются через трафарет, образуя вид плёнок. Плоские индуктивности, резисторы и конденсаторы наносятся в виде токопроводящих паст.

От материала диэлектрика зависит ёмкость, у каждого собственная структура. Считается, что аморфное вещество состоит из неориентированных диполей, упруго укреплённых на своих местах. При приложении внешнего электрического поля они обратимо ориентируются вдоль силовых линий, ослабляя напряжённость. В результате заряд накапливается, пока процесс не прекратится. По мере выхода энергии из обкладок диполи возвращаются на места, делая возможным новый рабочий цикл. Так функционирует плоский электрический конденсатор.

Из истории

Первым начал исследовать накопление заряда великий Алессандро Вольта. В докладе Королевскому научному обществу за 1782 год впервые озвучил слово конденсатор. В понимании Вольты электрофорус, представляющий две параллельные обкладки, выкачивал из эфира электрический флюид.

В давнее время все познания сводились к мнению учёных, будто атмосфера Земли содержит нечто, не определяемое приборами. Присутствовали простейшие электроскопы, способные определить знак заряда и его наличие, не дававшие представления о количестве. Учёные просто натирали мехом поверхность тела и подносили для исследования в область влияния прибора. Гильберт показал, что электрические и магнитные взаимодействия ослабевают с расстоянием. Учёные примерно знали, что делать, но исследования не продвигались.

Гипотеза об атмосферном электричестве высказана Бенджамином Франклином. Он активно исследовал молнии и пришёл к выводу, что это проявления прежней единой силы. Запуская воздушного змея в небо, он соединял игрушку шёлковой нитью с землёй и наблюдал дуговой разряд. Это опасные опыты, и Бенджамин многократно рисковал собственной жизнью ради развития науки. Шёлковая нить проводит статический заряд — это доказал Стивен Грей, первый собравший в 1732 году электрическую цепь.

Уже через 20 лет (1752 год) Бенджамин Франклин предложил конструкцию первого громоотвода, осуществлявшего молниезащиты близлежащих построек. Только вдуматься! – прежде любой ожидал, что дом сгорит от случайного удара. Бенджамин Франклин предложил один вид заряда называть положительным (стеклянный), а второй отрицательным (смоляной). Так физики оказались введены в заблуждение относительно истинного направления движения электронов. Но откуда возьмётся иное мнение, когда в 1802 году на примере опытов россиянина Петрова увидели, что на аноде образуется ямка? Следовательно, положительные частицы переносили заряд на катод, но в действительности это оказались ионы воздушной плазмы.

К началу исследования Вольтой электрических явлений уже известны статические заряды и факт наличия у них двух знаков. Люди упорно считали, что «флюид» берётся из воздуха. На эту мысль натолкнули опыты с натиранием янтаря шерстью, не воспроизводимые под водой. Следовательно, логичным стало предположить, что электричество может происходить исключительно из атмосферы Земли, что, конечно же, неверно. К примеру, многие растворы, исследованные Хампфри Дэви, проводят электрический ток.

Причина, следовательно, иная – при натирании янтаря под водой силы трения снижались в десятки и сотни раз, а заряд рассеивался по объёму жидкости. Следовательно, процесс лишь оказывался неэффективным. Сегодня каждый добытчик знает, что нефть электризуется трением о трубы без воздуха. Следовательно, атмосфера для «флюида» не считается обязательным компонентом.

Самый большой в мире плоский конденсатор

Столь систематизированные, но в корне неверные толкования не остановили Вольту на исследовательском пути. Он упорно изучал электрофорус, как совершенный генератор того времени. Вторым был серный шар Отто фон Герике, изобретённый на век раньше (1663 год). Его конструкция мало менялась, но после открытий Стивена Грея заряд начали снимать при помощи проводников. К примеру, в применяются металлические гребёнки-нейтрализаторы.

Долгое время учёные раскачивались. Электрофорная машина 1880 года вправе считаться первым мощным генератором разряда, позволявшим получить дугу, но истинной силы электроны достигли в генераторе Ван де Граафа (1929 год), где разница потенциалов составила единицы мегавольта. Для сравнения — грозовое облако, согласно данным Википедии, обнаруживает потенциал относительно Земли в единицы гигавольт (на три порядка больше, чем в человеческой машине).

Суммируя сказанное, с определённой долей уверенности скажем, что природные процессы используют в качестве принципа действия электризацию трением, влиянием и прочие виды, а мощный циклон считается самым большим из известных плоских конденсаторов. Молния показывает, что случается, когда диэлектрик (атмосфера) не выдерживает приложенной разницы потенциалов и пробивается. В точности аналогичное происходит в плоском конденсаторе, созданном человеком, если вольтаж оказывается непомерным. Пробой твёрдого диэлектрика необратим, а возникающая электрическая дуга часто служит причиной расплавления обкладок и выхода изделия из строя.

Электрофорус

Итак, Вольта взялся за исследование модели природных процессов. Первый электрофорус появился в 1762 году сконструированный Йоханом Карлом Вильке. По-настоящему популярным прибор становится после докладов Вольты Королевскому научному обществу (середина 70-х годов XVIII века). Вольта дал прибору нынешнее название.

Электрофорус способен накапливать электростатический заряд, образованный трением резины куском шерсти. Состоит из двух плоских, параллельных друг другу обкладок:

  • Нижняя представляет тонкий кусок резины. Толщина выбирается из соображений эффективности устройства. Если выбрать кусок солиднее, значительная часть энергии станет накапливаться внутри диэлектрика на ориентацию его молекул. Что отмечается в современном плоском конденсаторе, куда диэлектрик помещается для увеличения электроёмкости.
  • Верхняя пластина из тонкой стали кладётся сверху, когда заряд уже накоплен трением. За счёт влияния на верхней поверхности образуется избыток отрицательного заряда, снимаемого на заземлитель, чтобы при расстыковке двух обкладок не произошло взаимной компенсации.

Принцип действия плоского конденсатора уже понятен. Оператор трёт резину шерстью, оставляя на ней отрицательный заряд. Сверху кладётся кусок металла. Из-за значительной шероховатости поверхностей они не соприкасаются, но находятся на расстоянии друг от друга. В результате металл электризуется влиянием. Электроны отталкиваются поверхностным зарядом резины и уходят на внешнюю плоскость, где оператор их снимает через заземлитель лёгким кратковременным прикосновением.

Низ металлической обкладки остаётся заряженным положительно. При расстыковке двух поверхностей этот эффект сохраняется, в материале наблюдается дефицит электронов. И заметно искру, если дотронуться до металлической обкладки. Этот опыт допускается на единственном заряде резины проделывать сотни раз, её поверхностное статическое сопротивление крайне велико. Это не даёт заряду растекаться. Демонстрируя описанный опыт, Вольта привлёк внимание научного мира, но исследования не двигались вперёд, если не считать открытий Шарля Кулона.

В 1800 году Алессандро даёт толчок развитию изысканий в области электричества, изобретя знаменитый гальванический источник питания.

Конструкция плоского конденсатора

Электрофорус представляет собой первый из сконструированных плоских конденсаторов. Его обкладки способны хранить только статический заряд, иначе наэлектризовать резину невозможно. Поверхность чрезвычайно долго хранит электроны. Вольта даже предлагал снимать их пламенем свечи через ионизированный воздух или ультрафиолетовым излучением Солнца. Сегодня каждый школьник знает, что явление проделывается водой. Правда, электрофорус потом потребуется высушить.

В современном мире нижней обкладкой служит тефлоновое покрытие или пластик. Они хорошо набирают статический заряд. Диэлектриком становится воздух. Чтобы перейти к конструкции современного конденсатора, нужно обе обкладки сделать металлическими. Тогда при возникновении на одной заряда электризация распространится на вторую, и если другой контакт заземлён, накопленная энергия хранится определённое время.

Запас электронов напрямую зависит от материала диэлектриков. К примеру, среди современных конденсаторов встречаются:

  1. Слюдяные.
  2. Воздушные.
  3. Электролитические (оксидные).
  4. Керамические.

В эти названия заложен материал диэлектрика. От состава зависит напрямую ёмкость, способная увеличиваться многократно. Роль диэлектриков объяснялась выше, их параметры определяются непосредственно строением вещества. Однако многие материалы, обладающие высокими характеристиками, использовать не удаётся по причине их непригодности. К примеру, вода характеризуется высокой диэлектрической проницаемостью.

Электрическая емкость

При сообщении проводнику заряда на его поверхности появляется потенциал φ, но если этот же заряд сообщить другому проводнику, то потенциал будет другой. Это зависит от геометрических параметров проводника. Но в любом случае потенциал φ пропорционален заряду q .

Единица измерения емкости в СИ – фарада. 1 Ф = 1Кл/1В.

Если потенциал поверхности шара

(5.4.3)
(5.4.4)

Чаще на практике используют более мелкие единицы емкости: 1 нФ (нанофарада) = 10 –9 Ф и 1пкФ (пикофарада) = 10 –12 Ф.

Необходимость в устройствах, накапливающих заряд, есть, а уединенные проводники обладают малой емкостью. Опытным путем было обнаружено, что электроемкость проводника увеличивается, если к нему поднести другой проводник – за счет явления электростатической индукции .

Конденсатор – это два проводника, называемые обкладками , расположенные близко друг к другу.

Конструкция такова, что внешние, окружающие конденсатор тела, не оказывают влияние на его электроемкость. Это будет выполняться, если электростатическое поле будет сосредоточено внутри конденсатора, между обкладками.

Конденсаторы бывают плоские, цилиндрические и сферические.

Так как электростатическое поле находится внутри конденсатора, то линии электрического смещения начинаются на положительной обкладке, заканчиваются на отрицательной, и никуда не исчезают. Следовательно, заряды на обкладках противоположны по знаку, но одинаковы по величине.

Емкость конденсатора равна отношению заряда к разности потенциалов между обкладками конденсатора:

(5.4.5)

Помимо емкости каждый конденсатор характеризуется U раб (или U пр. ) – максимальное допустимое напряжение, выше которого происходит пробой между обкладками конденсатора.

Соединение конденсаторов

Емкостные батареи – комбинации параллельных и последовательных соединений конденсаторов.

1) Параллельное соединение конденсаторов (рис. 5.9):

В данном случае общим является напряжение U :

Суммарный заряд:

Результирующая емкость:

Сравните с параллельным соединением сопротивлений R :

Таким образом, при параллельном соединении конденсаторов суммарная емкость

Общая емкость больше самой большой емкости, входящей в батарею.

2) Последовательное соединение конденсаторов (рис. 5.10):

Общим является заряд q.

Или , отсюда

(5.4.6)

Сравните с последовательным соединением R :

Таким образом, при последовательном соединении конденсаторов общая емкость меньше самой маленькой емкости, входящей в батарею:

Расчет емкостей различных конденсаторов

1. Емкость плоского конденсатора

Напряженность поля внутри конденсатора (рис. 5.11):

Напряжение между обкладками:

где – расстояние между пластинами.

Так как заряд , то

. (5.4.7)

Как видно из формулы, диэлектрическая проницаемость вещества очень сильно влияет на емкость конденсатора. Это можно увидеть и экспериментально: заряжаем электроскоп, подносим к нему металлическую пластину – получили конденсатор (за счет электростатической индукции, потенциал увеличился). Если внести между пластинами диэлектрик с ε, больше, чем у воздуха, то емкость конденсатора увеличится.

Из (5.4.6) можно получить единицы измерения ε 0:

(5.4.8)

.

2. Емкость цилиндрического конденсатора

Разность потенциалов между обкладками цилиндрического конденсатора, изображенного на рисунке 5.12, может быть рассчитана по формуле:

Одними из наиболее часто используемых электронных компонентов являются конденсаторы . И в этой статье нам предстоит разобраться, из чего они состоят, как работают и для чего применяются 🙂

Давайте, в первую очередь, рассмотрим устройство конденсаторов , а затем уже плавно перейдем к их основным видам и характеристикам, а также к процессам зарядки/разрядки. Как видите, нам сегодня предстоит изучить много интересных моментов 😉

Итак, простейший конденсатор представляет из себя две плоские проводящие пластины, расположенные параллельно друг другу и разделенные слоем диэлектрика. Причем расстояние между пластинами должно быть намного меньше, чем, собственно, размеры пластин:

Такое устройство называется плоским конденсатором , а пластины – обкладками конденсатора . Стоит уточнить, что здесь мы рассматриваем уже заряженный конденсатор (сам процесс зарядки мы изучим чуть позже), то есть на обкладках сосредоточен определенный заряд. Причем наибольший интерес представляет тот случай, когда заряды пластин конденсатора одинаковы по модулю и противоположны по знаку (как на рисунке).

А поскольку на обкладках сосредоточен заряд, между ними возникает электрическое поле, изображенное стрелками на нашей схеме. Поле плоского конденсатора, в основном, сосредоточено между пластинами, однако, в окружающем пространстве также возникает электрическое поле, которое называют полем рассеяния. Очень часто его влиянием в задачах пренебрегают, но забывать о нем не стоит 🙂

Для определения величины этого поля рассмотрим еще одно схематическое изображение плоского конденсатора:

Каждая из обкладок конденсатора в отдельности создает электрическое поле:

Выражение для напряженности поля равномерно заряженной пластины выглядит следующим образом:

Здесь – это поверхностная плотность заряда: . А – диэлектрическая проницаемость диэлектрика, расположенного между обкладками конденсатора. Поскольку площадь пластин конденсатора у нас одинаковая, как и величина заряда, то и модули напряженности электрического поля, равны между собой:

Но направления векторов разные – внутри конденсатора вектора направлены в одну сторону, а вне – в противоположные. Таким образом, внутри обкладок результирующее поле определяется следующим образом:

А какая же будет величина напряженности вне конденсатора? А все просто – слева и справа от обкладок поля пластин компенсируют друг друга и результирующая напряженность равна 0 🙂

Процессы зарядки и разрядки конденсаторов.

С устройством мы разобрались, теперь разберемся, что произойдет, если подключить к конденсатору источник постоянного тока. На принципиальных электрических схемах конденсатор обозначают следующим образом:

Итак, мы подключили обкладки конденсатора к полюсам источника постоянного тока. Что же будет происходить?

Свободные электроны с первой обкладки конденсатора устремятся к положительному полюсу источника, в связи с чем на обкладке возникнет недостаток отрицательно заряженных частиц и она станет положительно заряженной. В то же время электроны с отрицательного полюса источника тока переместятся ко второй обкладке конденсатора, в результате чего на ней возникнет избыток электронов, соответственно, обкладка станет отрицательно заряженной. Таким образом, на обкладках конденсатора образуются заряды разного знака (как раз этот случай мы и рассматривали в первой части статьи), что приводит к появлению электрического поля, которое создаст между пластинами конденсатора определенную . Процесс зарядки будет продолжаться до тех пор, пока эта разность потенциалов не станет равна напряжению источника тока, после этого процесс зарядки закончится, и перемещение электронов по цепи прекратится.

При отключении от источника конденсатор может на протяжении длительного времени сохранять накопленные заряды. Соответственно, заряженный конденсатор является источником электрической энергии, это означает, что он может отдавать энергию во внешнюю цепь. Давайте создадим простейшую цепь, просто соединив обкладки конденсатора друг с другом:

В данном случае по цепи начнет протекать ток разряда конденсатора , а электроны начнут перемещаться с отрицательно заряженной обкладки к положительной. В результате напряжение на конденсаторе (разность потенциалов между обкладками) начнет уменьшаться. Этот процесс завершится в тот момент, когда заряды пластин конденсаторов станут равны друг другу, соответственно электрическое поле между обкладками пропадет и по цепи перестанет протекать ток. Вот так и происходит разряд конденсатора, в результате которого он отдает во внешнюю цепь всю накопленную энергию.

Как видите, здесь нет ничего сложного 🙂

Емкость и энергия конденсатора.

Важнейшей характеристикой является электрическая емкость конденсатора – физическая величина, которая определяется как отношение заряда конденсатора одного из проводников к разности потенциалов между проводниками:

Емкость изменяется в Фарадах, но величина 1 Ф является довольно большой, поэтому чаще всего емкость конденсаторов измерятся в микрофарадах (мкФ), нанофарадах (нФ) и пикофарадах (пФ).

А поскольку мы уже вывели формулу для расчета напряженности, то давайте выразим напряжение на конденсаторе следующим образом:

Здесь у нас – это расстояние между пластинами конденсатора, а – заряд конденсатора. Подставим эту формулу в выражение для емкости конденсатора:

Если в качестве диэлектрика у нас выступает воздух, то во всех формулах можно подставить

Для запасенной энергии конденсатора справедливы следующие выражения:

Помимо емкости конденсаторы характеризуются еще одним параметром, а именно величиной напряжения, которое может выдержать его диэлектрик. При слишком больших значениях напряжения электроны диэлектрика отрываются от атомов, и диэлектрик начинает проводить ток. Это явление называется пробоем конденсатора, и в результате обкладки оказываются замкнутыми друг с другом. Собственно, характеристикой, которая часто используется при работе с конденсаторами является не напряжение пробоя, а рабочее напряжение – то есть величина напряжения, при которой конденсатор может работать неограниченно долгое время, и пробоя не произойдет.

В общем, мы рассмотрели сегодня основные свойства конденсаторов, их устройство и характеристики, так что на этом заканчиваем статью, а в следующей мы будем обсуждать различные варианты соединений конденсаторов, так что заходите на наш сайт снова!

Большое число конденсаторов, которые применяют в технике, приближены по типу к плоскому конденсатору. Это конденсатор, который представляет собой две параллельные проводящие плоскости (обкладки), которые разделяет небольшой промежуток, заполненный диэлектриком. На обкладках сосредоточены равные по модулю и противоположные по знаку заряды.

Электрическая емкость плоского конденсатора

Электрическая емкость плоского конденсатора очень просто выражается через параметры его частей. Изменяя площадь пластин конденсатора и расстояние между ними легко убедиться, что электрическая емкость плоского конденсатора прямо пропорциональна площади его пластин (S) и обратно пропорциональна расстоянию между ними (d):

Формулу для расчета емкости плоского конденсатора просто получить при помощи теоретических расчетов.

Положим, что расстояние между пластинами конденсатора много меньше, чем их линейные размеры. Тогда краевыми эффектами можно пренебречь, и электрическое поле между обкладками считать однородным. Поле (E), которое создают две бесконечные плоскости, несущие одинаковый по модулю и противоположный по знаку заряд, разделенные диэлектриком с диэлектрической проницаемостью , можно определить при помощи формулы:

где — плотность распределения заряда по поверхности пластины. Разность потенциалов между рассматриваемыми обкладками конденсатора, находящимися на расстоянии d будет равна:

Подставим правую часть выражения (3) вместо разности потенциалов в (1) учитывая, что , имеем:

Энергия поля плоского конденсатора и сила взаимодействия его пластин

Формула энергии поля плоского конденсатора записывается как:

где - объем конденсатора; E - напряженность поля конденсатора. Формула (5) связывает энергию конденсатора с зарядом на его обкладках и напряженностью поля.

Механическую (пондемоторную) силу, с которой пластины плоского конденсатора взаимодействуют между собой можно найти, если использовать формулу:

В выражении (6) минус показывает, что пластины конденсатора притягиваются друг к другу.

Примеры решения задач

ПРИМЕР 1

Задание Чему равно расстояние между пластинами плоского конденсатора, если при разности потенциалов В, заряд на пластине конденсатора равен Кл? Площадь пластин , диэлектриком в нем является слюда ().
Решение Емкость конденсатора вычисляется при помощи формулы:

Из этого выражения получим расстояние между пластинами:

Емкость любого конденсатора определяет формула:

где U - разность потенциалов между обкладками конденсатора. Подставим правую часть выражения (1.3) вместо емкости в формулу (1.2), имеем:

Вычислим расстояние между обкладками ():

Ответ м

ПРИМЕР 2

Задание Разность потенциалов между пластинами плоского воздушного конденсатора равна В. Площадь пластин равна , расстояние между ними м. Какова энергия конденсатора и чему она будет равна, если пластины раздвинуть до расстояния м. Учтите, что источник напряжения при раздвижении пластин не отключают.
Решение Сделаем рисунок.


Энергию электрического поля конденсатора можно найти при помощи выражения:

Так как конденсатор плоский, то его электрическую емкость можно вычислить как: